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MULTIPLE SOLUTIONS OF A FREE BOUNDARY
FRC EQUILIBRIUM PROBLEM TN A METAL CYLINDER

Ross L. Spencer and Dennis W. Hewett
University of California
Los Alamos Natjonal Laboratory
Los Alamos, NM 87545

I. INTRODUCTION

Tield reversed theta pinch experiments routinely produce very prolate plasna
equilibria; magnetohydrodynamic equilibrium codes do not. Since the experimental
plasmas seem to be stable against the tilting-instability that is predicted for
moderately elongated equilibria, it has been conjectured that the observed
stability is due to exaggerated elongation. It has been difficult to test this
hypothesis because long equilihria have been difficult to compyte. Previous
calculations have indicated that such equilibria might exist!” , but none of these
computed equilibria has been completely satisfactory.

Ve present a new approach to the computation of FRC equilibria that avoids the
previously enccuntered difficulties. For arbitrary pressure profiles it s
computationally erpensive, but for one special pressure profile the nroblem is
simple enough to require only minutes of Cray time; 12 is this problem that we
have solved. We solve the Grad-Shefranov equation, A y = -rp’(¢), in an
infinitely long flux conservinpg rylinder of radius a with the boundary conditions
that y(a,z) = -{,, and that 3v/3z = 0 as |z| approaches infinity. The pressure
profile is p'(y) = cH(y) where ¢ is a constant and where H(x) is the Heaviside
function. We have found four solutions tv this problem: There is a purely vacuum
state, two 2-independent plasma so.utions, and an r-z2-dependent plasma state.
These last three so’utions are obtained only if the constant c is greater than a
certain value; for ¢ smaller than this lower limit the three plasma solutions
cease to exist. At the critical value of c all three plasma solutions coalesce,
and {¢ is near this critical value of ¢ that elongated equilibria are obtained.
This means that the elongated equilibria are found near a bifurcation point of the
solution set, a notorfously difficult region in which to compute. This probably
explains why elongated sclutions have been so difficult to find.

II. ONF-DIMENSIONAL SOLUTIONS
Except for the trivial vacuum solution, y = -¢wr2/a7, the z-independent solu-
tions are the simplest to find. An elementary calculation ylelds
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and where d = 22 /c and ¢ = O at r = 2/b/c. Note that there arc two poss. ble

solutions; these two 3olutions nre‘ggallzed only if b is real, {.e. only if

c 32¢"/a". Figure | displays the y = 0 radius as a fuaction of c. The upper
rolution {n this figure is a high trapped flux solution that compresses the vacuaum
flut against the wall as c becomes large. Tae lower solution in this figure is a
low trapped flux solution that is squeczed to the axis by the vacuum flux as ¢
becomer la:ge. The presence of a value of c below which no equilibria exist is
explained by noting that the toroidal currer: density is given by jq w =crH(y).

If c 16 too small, there is not enough current dengity to produce fleld revernal,



and no solutions of the model problem are possible. This same argument should
apply to any two-dimensional solutions as well, so we expect in any family of
equilibria parameterized by c o encounter a lower limit in ¢ below which no equi-
libria exist.

IXI, A TWO-DIMENSION..L SOLUTION

From studies of Hill’s vortex equilibria done by us (and independently by John
Boyd), we know there is at least one two-dimensional family of solutions
parametrized by c. With y given by the Hill's vortex formula inside the
separatrix, a matching vacuum field outside the separatrix may be constructed by
means of ellipsoidal :coordinates. For both prolate and oblate Hill’s vortices,
the matching vacuum field has mirror coils at infinity, but for the c¢pherical
Hill’s vortex, the field lines at infinity are straight. This spherical solution
is given by
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vhere p = /15B /2c and where B_ is the uniform magnetic field at infinity. This
solution will be obtained in the model problem when tie plasma radius becomes very
small so that the ~yiindrical wall is effectively very far away, i.e., when ¢ is
very large. This means there exists a two-dimensional fam.ly of solutions whose
large ¢ 1imit is given by Eq. (3) (B, 1is replaced by 2y,/a?). As c is decreased,
the equiiibria should become larger and finally approach a final state at some
critical value o/ c.

We tried to compute these larger equilibria by : nite difference methods oun a
mesh, but ran iato difficulties. We conjecture that the sharp-edged current
distribution ard the free-boundary non-linearity in the prohlem were what caused
our iteration methods to converge to states that were not in fact equilibria. To
overcome these difficulties we completely reformulated the problem. Using the
Creen’s theorem for A*, the Grad-Shafranov equation may be inverted to obtain the
equation
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where G satisfies A"G = ré{r-r’)6(z=-2") and G = 0 4f r,r’ = a. The Green's
function is given by the expression
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Formulatinp the protiem this way has the advantape that {t {s not nccessary to
compute finite differences across the separatrix where the current deunsity may be
discontinuous; the integration is tsken over the region where there is current and
the Green's function takes ca.: of the vacuum fi:1d. Doing the integrations
accurately requires a fine mesh; if a general pressure profile were used,
iteration would be necessary to find ¢ inside the scparatrix, and this method
might be very expensive. But for our model problem, there is no ¢ devendence on
the ripint-hand side of Eq. (4) except foir the nhape of the geparatrix. Since the
srpacatrix i given by y = 0, Eq. (4) can be used to obtain the following
non-lirear equation for the separatrix.
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where 2 1is the region in the r’-z° plane bounded by the separatrix. We do the
integrations in spherical coordirates and represent the separatrix as an expsnsion
in even-order Legendre polynomials as follows.

p(x) = N, a P, (x) (7

where p(x) is the spherical radius of the separatrix at the polar dngle € = cos ' (x).
The problem is solved when the a’'s are determined.

When Eq. (6) is solved for very large ¢ the small radius spherical solution is
reccvered. As ¢ is decreased the solutions remain practically spherical until the
radius ¢f the solution at z=0 becomes greater than about .6&; as ¢ is decreased
further, the solutions beccme prolate and racetrack-like in shape. As ¢
approaches the one-dimensional critical value, the elongation evidently becomes
infinite, and this two-dimensional soluticn branch connect:s with the l1-dimensional
solution branches right at their bifurcation point. Figure 2 shows the separatrix
shapes for a sequence of values of ¢ approaching the critical value, Fig. 3 shows
the elongation of the solutions as a function of ¢, and Fig. 4 shows the flux plot
of a long equilibrium. For ratios of the separatrix half-length (zse ) to
midplane radius (rG ) preater than about 4, a prohibitive number of a; s are
required. Hence, tﬁg exact behavior of Tee /zs at the critical ¢ is uncertain.
Nonetheiess, the elongation does appear to ge sﬁgrply singular there; only in a
relatively narrow region in c are very long equilibria obtained. Since these
elongated equilibria lie near a bifurcation point, it should de a very delicate
matter to compute them by standard numerical methods.

We have found up to feur solutions of our model problem given a value of c.
There may be other soluiion branches, hut this two-dimensional branch contains
elongated racetrack equililibria of the type observed in experiments.

Finally, we note that there are many pressure profiles whose one—dimensional
solutions lie on two connected branches like that represented for the model prob-
lem in Fig. 1. 1In particular, if p’' = cf(w/wo) wvhere ¢y, is the maximum value of ¢
in the plasma, two one-dimensional sclution branches parametrized by c are often
obtained. We conjecture that for all such pressure profiles there exists at least
on! two-dimensional solution branch nsarametrized by ¢ that hecomes infinfitely long
as c approaches the ocae-dimensional critical value from above. If this conijecture
is true, it is posrible to obtain some information about the desired elongated
equilibrium by solving the much simpler one-dimensional prohlem and examining its
critical solution. The cricical solution will have nearly the same average
radius, trapped flux, radial magnetic field profile, and radial pressure profile
us an e€longated equilibrium with the eame pressurce profile.

This work was performed under the auspices of the U.5.0.0.E.
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FIGURE CAPTIONS

Fig. 1 The y=0 radius is displayed as a function of ¢ for the one-dimensional
solution of the model problem.
Fig. 2 The separatrix shapes for a sequence of values of ca"/y, are shown:
(_l) 60. (b) 40. (C) 36| (d) 340
Fig. 3 The elongation, 2 ep/rsep' ic displayed as & function of c.
Fig. 4 A flux plct for tge case ca“/ww = 34 is shown.
Figure 1
1.0 2 § T . X :a
ole 0.5 -
.-.
\
o - k. A 1
0 32 o4 -] 128 180
Cd‘
*w
Figure 2 Figure 3
() e T T —T
A Q a _d 8+ -
(b) ry. —
A a8
o el® I -
) m ‘J - M
1 1 L zr- -
‘ () 1L —
N T
-4 -2 [ 2 ] -
. s ¢ a s oo 3 e 26
4
ca
iu
C=34y  /a*
w Figure 4




